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ABSTRACT 

An algebraic decidable condition for a stationary Markov chain to consist of 
a single ergodic set, and a graph-theoretic decidable condition for a stationary 
Markov chain to consist of a single ergodic noncyclic set are formulated. 

In the third part of the paper a graph-theoretic condition for a nonstationary 
Markov chain to have the weakly-ergodic property is given. 

1. Introduction. In this paper  we are concerned with algebraic and graph- 

theoretic characterizations of  stationary and nonstationary Markov  chains (with 
discrete t ime parameter  and finite number  of  states). 

In the first part  we formulate a graph-theoretic condition for a given chain 

to consist of  a single ergodic noncyclic set. This condition is shown to be equi- 

valent, as to characterization, t c a  condition given in Doob  [3, p. 173] but more 

economical as to computation.  

In the second part  we formulate a simple algebraic sufficient and necessary 

condition for a stationary Markov  chain to consist of  a single ergodic set. This 
condition can also be used to characterize finite graphs, since with every finite 
graph one can associate an infinite number  of  Markov  chains. 

In the third part  we derive a theorem generalizing a result mentioned in Doob  
[2] for stationary chains, to a certain type of  nonstationary chains. The theorem 
states, roughly, that  such a nonstat ionary chain, after a sufficiently long lapse 
of  time, " fo rge t s "  its initial state. 

Some formulas characteristic of  nonstationary chains are given, permitting 
approximation of  long products of  stochastic matrices satisfying certain con- 
ditions. 

Afini te  graph [1] is an ordered pair ( S , F )  where S is a finite nonempty set 

and F a multi-valued mapping of  S into S. The elements of  S are called vertices, 
and the ordered pairs ( a , b ) ,  such that  a E S and b c a F * *  are called edges. 
A sequence of  vertices (aoa 1 ... av) such that ( a i a i+x)  (i = 0 , . . . , v - l )  is an 

edge, is a path  of  length v and av is a consequent of  order v of  ao. (Notat ion:  

a~ E a0F*). 

Received May 14, 1963. 
* The paper is based on part of the author's work towards the D. Se. degree. 

** a F is the set of all F images ofa. 
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A graph is strongly connected if for every pair of vertices i , j  (i ~ j),  i is a con- 
sequent of j. 

A pair of vertices i and j has a common consequent k (of order v) if there exists 
a v such that k ~ i F ' f 3 j F  ~. 

If  all the vertices in the graph have a common consequent k of  order v, then 
k is a universal consequent of order v for the given graph. 

A vertex in a given graph is transient if it has a consequent of which it is not 
itself a consequent. 

A vertex which is not transient is nontransient. Note that, if i is a consequent 
o f j  and j is nontransient, then j is a consequent of i and i is nontransient. (For 
let k be any consequent of i; then k is a consequent o f j  and j is nontransient, 
whence j is a consequent of k, this implying that i is also a consequent of k). 

Note also that the set of nontransient vertices cannot be empty, since a maxi- 
mal sequence of vertices connected by a path must terminate in a nontransient 
vertex. 

The class of nontransient vertices is subdivided into ergodic subclasses (where 
an ergodic class is the set of vertices of a maximal strongly-connected subgraph) 
with two vertices belonging to the same ergodic class iff they are consequents 
of each other. 

Finally, it can be shown [4, p. 611 that with any ergodic class E there is asso- 
ciated a unique positive integer d with the following properties: 

1) If  i e E and i e iF', then d divides v. 
2) ! f i , j ~ E  and .~eiF z as well as j e i F ' ,  then l ~ - v ( m o d d ) .  
3) d is the smallest integer having properties 1) and 2). 
Thus any ergodic class E may be subdivided into d cyclic classes C1 ". Cd, 

as follows: 
Two vertices i , j  belong to the same cyclic class, i f f j  • iF" and v -  0(modd). 
Note that if i e Ct, j e Ct (1 < t -< d) and j e iF" then v - t - l ( m o d d )  

EXAMPLES. 

1 2 

3 

5 4 

1" ) ' 3  
\ s 

2" 7 . 4  

II 

In graph I vertices 1 and 5 are transient while 2, 3, 4 are nontransient, forming 
an ergodic (strongly-connected) subgraph. Vertices 5 and 3 have vertex 4 as 
common consequent of  order 1. 

In graph II all vertices are nontransient. The graph is strongly connected 
and subdivisible into the cyclic subclasses {1,2} and {3,4}. 



1963] C H A R A C T E R I Z A T I O N S  O F  S O M E  M A R K O V  P R O C E S S E S  171 

2. Conditions H 1 and H 2. We shall consider the following conditions for a 
given graph: 

Condition HI.,  Every pair of vertices in the graph has a common consequent. 
Condition H 2. The graph has a universal consequent. 

THEOREM 1. A graph which satisfies condition H 1 contains a single ergodic 

class which is not divisible into cyclic subclasses. 

Proof. Suppose there are several ergodic classes in the graph, G~,G 2 " "  G r. 

Let il ~ G~, it ~ Gt be a pair of vertices of different classes. By our assumption, 
il and is have a common consequent k, where k is nontransient being a consequent 
of nontransient vertices. Hence il and is are consequents of k, and this implies 
that k c Gt and k ~ Gr Thus G1 and G t are identical classes. To prove the second 
part of the theorem, assume that the ergodic class in the graph is divisible into 
several cyclic subclasses C1, C2"" Cd. Let c 1 e C1 and ct ~ Ct be a pair of vertices 
of different classes. They have a common consequent k which is nontransient 
and hence belongs to a cyclic class Ck. This implies that k is a consequent of 
order k - l (modd)  of cl and a consequent of order k - t ( m o d d )  of Cr Now k 
is a common consequent of c I and ct, which implies that k - 1  - k - t ( m o d d )  
or 1 - t ( m o d d ) ;  thus c~ and ct are identical cyclic classes. 

THEOREM 2. Let ( S , F )  be a graph with n vertices. If  a pair of  vertices i 
and j,  i, j ~_ S, has a common consequent, then it has a common consequent of 

order v where v < n ( n - 1 ) / 2 .  

Proof. If  states i and j have a common consequent, then there exists a se- 
quence of (unordered) pairs of vertices (with i = io, j =Jo):  

( ioJo) , ( i l jx)  ... (iuju) 

such that 
(1 )  i k ~6 jk k = 0 , 1 , 2 , . . . , / t - 1  
(2) i k E iF  k, Jk EJ Fk 

(3) iu = j ,  
If  the sequence contains two equal pairs, then omit the part of the sequence 

between these pairs, including the second of the equal pairs. Repeat this pro- 
cedure until a reduced sequence is obtained: 

(ioJo),(i[j~) ... (i~j'k)"'" (i'j'v) 
such that 

• ! . !  

(1') ~kV~Jk k = 0 , 1 . . . v - 1  
(2') i;, ~ iF k j k % j r  k 

(3') (i~j;) ~ (i~j',) l ~ t ,  k , t = l , 2 . . . v  
(4') i" = j"  
Now by (2') and (4') i~ = j" is a common censequent of order v of the vertices 

i and j,  while by (1') and (3') ~ is at most n ( n -  1)/2. Q.e.d. 
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Note that if vertices i and j have a common consequent of order v, then they 
also have a common consequent of  order v + k,k = 1,2.. . .  

TrmOR~M 3. Condition H1 is equivalent to H2. 

Proof. That H 2 implies H1 is trivial. Now assume Ht  to hold and let i and j 
be a pair of  vertices in the graph. These vertices have a common consequent k 
of order yr. Let t be a vertex different from i and j and t any consequent of t of 
order vl. By H1, vertices l and k have a common consequent of order v2, which 
is a common consequent of order vl + v2 of vertices i, j and t. This argument 
can be repeated a finite number of times to give a universal consequent. Q.e.d. 

With every finite graph ( S , F )  where S = {vlv2 "" v,} one can associate an 
n x n Boolean matrix (transition matrix) M<s,r> = II m,jl!, such that 

1 - i f  (v~vi) is an edge of the graph, 
mi~ = 0 - otherwise. 

It is easily proved that the powers of M <s,r>, namely M<k,r> = II m~'ll, k - -  1 , 2 , .  , 

are such that: 

(k)_ [ 1 - i f  there is a path of length k from i to j,  
mij - / 0 - otherwise. 

This result, combined with Theorem 2, provides a computational method for 
deciding whether a given graph satisfies H1. The question is decided by raising 
the transition matrix of the graph to the n.  (n -1) /2 - th  power at most. By Theo- 
rem 3, the same method will decide whether a given graph satisfies H2. 

Note that H 1, although equivalent to H2, is more economical in the sense 
that more steps would be required to decide directly whether a given graph 

satisfies H2. 

EXAm'LE. Consider the following graph 

2" >.3 

T l 
1 .< - 4  

• ",a J 

In order to verify whether vertices 2 and 5 have a common consequent, we con- 
sider the sequence of consequent sets: 

{2} 1 {3} 2 {4} 3 {5,1} " {1,2} s {2,3} 6 {3,4} 7 {4,5,1} 8 

{5} {1} {2} {3} {4} {5,1} {1,2} {2,3} 

s {5 ,1 ,2}  ' {1 ,2 ,3}  
-,,.k ..-.k 

{3,4} {4,5,1} 
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One sees that vertex 1 is a common consequent at vertices 2 and 4 of order 9 
(the bound given by Theorem 2 in this case being 10). Inspection also shows 
that any other pair of  vertices in the graph have a common consequent at smaller 
order than vmtices 2 and 5. 

Further consideration of this example shows that 13 steps would be required 

to decide directly whether this graph satisfies H 2. 

REMARK. The above graph can be generalized: 

Let S =  {1,2, . . . ,n} and define: 

i F = i + 1  

( n - 2 ) F  = { n - l l  

( n -  1 )r  = 1 

It can be shown that this graph satisfies the condition H1 but the smallest order 
for which the condition is satisfied is (n z - 2n + 2)/2 if n is even and (n 2 - 2n + 3)/2 
if n is odd. These numbers are close enough to the bound given in Theorem 2. 

3. Stochastic matrices. Stationary ease. In what follows familiarity with finite 
stochastic matrices and their properties is assumed. The reader is referred to 
[2, 3, 4] for a detailed account on these topics. 

A finite stochastic matrix is a square matrix A = II aij[l such that aij_-> 0, 
i , j  = 1,2, . . - ,n ,  and ~ = 1  alj = 1, i = 1,2, . . . ,n .  

With every stochastic finite matrix A there can be associated a finite graph 
(S,  F )  such that S = (v lv  2... v,,}, where n is the order of  A and the ordered 
pair of  vertices (Vl, v j )  is an edge of the graph iff a~j > 0. More generally, the 
elements of  the stochastic matrix are interpreted as the probability of  transition 
from state to state in a system having n internal states. 

Using the previous classification of  vertices in a given graph (internal states 
in a given system) we can now state: 

THEOREM 4*. I f  A is a stochastic matrix,  there is a stochastic matrix 
Q =  UqlJ][ such that 

lim 1 ~ Am = Q. 
n~oO n m=l 

THEOREM 5**. The limit qij in Theorem 4 is independent of  i i f f  there is a 
single ergodic class in the graph related to A. 

TrIEOREM 6***. The limit qij of Theorem 4 can be taken as ordinary limit 

lim 1 ~ Am = lim A m 
n~oO n m = l  n ~ o o  = Q 

* For a proof, see [2, p. 175]. 
** For proof, see [2, p. 181]. 

*** See [2, p. 182]. 
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iff there are no cyclic subclasses in any ergodic class of the graph related to A. 

COROLLARY 1. If  A is a stochastic matrix and the graph related to this matrix 
satisfies H1 or (H2), then there is a matrix Q= IIq, ll such that 

lim -1 ~ A m = l i m  A" = Q 
n - ¢ o o  n m = l  n,..¢oo 

and qij is independent of i. 

Proof. By Theorems 1, 3, 5 and 6. 
The limiting matrix Q. 
In the sequel, some additional definitions are needed: 
Let A be an n x n matrix, ~/the n-component row vector and ~ the n-component 

column vector having all components equal to 1. 
A(,) denotes the r-th row and A (') the r-th column of A. Clearly (A • B)(,) 

= A(,)B; .4(,) is obtained from A(,) by omitting the r-th term. 

A(') , i. 
Clearly ~- A(,) = ,1~(,) e. a matrix all whose rows are equal to At, ). 

If A is stochastic, then A(,)~ = 1 and A~ = ~. 
If A¢ = ~ and also r/A = r/then A called doubly stochastic. 
For any stochastic n × n matrix A and any r < n we define the r-th kernel of A, 

denoted by kr(A), as k,(A)= A -  ~A(,). 
Finally, k,(A) is obtained from k,(A) by omitting the r-th column and the 

r-th row. (k,(A) is a ( n - 1 )  x ( n - 1 )  matrix). 

The usual way to compute lim A n or lim 1 ]~ Ak (when the first limit does 
n ~ o O  n ~ o O  n k = l  

not exist) is based on the fact that the limiting matrix Q satisfies (in both cases) 
the equation 

QA = AQ - Q or Q I - I - A ]  = 0 

This equation is equivalent to a set of n linear homogeneous equations. Non- 
trivial solutions exist provided ] I -  A I= 0. If the system associated with the 
matrix consists of a single ergodic class, then it is known that a unique solution 
exists for the set of equations 

f (xl ...~n) [I - A] = 0 

(1) xi = 1 
i = l  

This implies that I 1 -  A I =  0 and the dimension of [ I -  ,4] is n - 1  (for the 
single ergodic class system). 

From (1) we obtain, by adding to both sides (xl " ' xn ) '~ 'A t ,  ), 
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(2) (xx -.. x,) [I  - (A - ~A(r)) ] = (xl ... x,) ~ A(,) 

Now ]Exi = 1, hence (xl "" x,)# = 1 and (xl "" x,)#A(,)= At,); thus 
(xl . . . x , ) [ I -  ( A -  CA(,))] = A(, ), and by the definitions introduced above, 

(3) (xl ... x,) [I  - /~,(A)} = a(,) 

• n X Any vector (xl .. x,) which is a solution of(3) is such that (xx ".. x,)~ = ~]i = 1 i = 1. 
Indeed, ]ELlx i = (xl.-.x,)~ = (Xl . - .x , ) [~ -~  + ¢] = (xx...x,,)[I - A + ~A(r)] ~ = 
= (x 1 . . . x , ) [ I -  /~,(A)]~ = A(,)~ = 1. 

Any such vector is therefore a solution of (2) and (1). Thus (1) is seen to be 
equivalent to (3). 

From Theorem 5 it follows that the system related to the matrix A consists 
of  a single ergodic set iff (1) and (3) have a unique solution such that; 

I I - x (a) l # o 
(4) and 

(xl "'" x,) = A(r)[I -- £ ( A ) ] -  1. 

We have thus proved the following 

TI-rEOREM 7. Let A be a stochastic matrix, then for  any r =  1,2, . . . ,n ,  
]1 - /~r(A) ] # 0 if and only if the system related to A consists oJ a single ergodic 
class. 

REMARKS. 1) It is easily seen that the theorems in this section could have 
been proved with K,(A) replacing K,(A) (see definition on p. 178). This use of 
K,(A) has the advantage that K,(A) is an ( n - 1 )  by ( n - 1 )  matrix while R~(A) 
is n by n. Similarly we can write, instead of  (3) and (4), 

(3') (xl "'" Xr- 1X,+I "'" Xn) [I -- Kr(A)] = A(r) 

(4') (xl ... x,_ 1Xr+ l " "  X,) = A(~)[I - Kr(A)]- 1 

The information contained in these formulas is the same as that in (1) and (2), 
since (xl .--x,) is a stochastic vector, whence x, = 1 -  ~ i , , x i .  

2) Corollary 1 in the preceding section and Theorem 7 provide a method 
for analysing the structure of  a system representable by a stochastic matrix. 

With the aid of  Theorem 7, we first ascertain whether the system has a single 

ergodic class or not. I f  it has several ergodic classes, we can investigate each 
class separately. If  it has a single ergodic class, we have to ascertain whether 

it satisfies H1 (or H2). I f  it does, the ergodic class is not divisible into cyclic sub- 
classes. The decision procedure given here is quite simple from a computational 
point of  view. 

3) The decision procedure described in Remark 2 can be applied to finite 
graphs as well. With a given finite graph one can associate a stochastic matrix 
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A=II~,jI I such that a , j > 0  iff (v,vj) is an edge of the graph, and 
~ = t a ~ k =  1, i =  1,2, . . . ,n.  The matrix A is clearly not unique and we can 

choose the simplest possible matrix (as to computation) satisfying the above 
condition; then the procedure described in Remark 2 can be applied to the chosen 
matrix. 

EXAMPLES. Consider the matrices 

3 0 3  

o ~ o 

A= ½ 0 ~  

o ~ o  

3 ¼ 0  

For matrix A, [ I -  Ks(A)] = 0. Hence 

0 01 0 

o o 

o o B =  

0 

o 3J ¼ 

0 3 3 0  

o ] ~ o  

] o o o  

] o o o  

0 3 0 ¼  

A has 

C = 

o o o 3 3 "  

o o ] ] o  

0 ¼ ¼ 0 3  

] o ] o ~  

( ] 3 o ~ o  

more than one ergodic class. 
We find by inspection that the sets are {1, 3} and {2,4}, while state 5 is transient. 
Matrix B corresponds to a chain consisting of a single ergodic set and two cyclic 
subclasses, and matrix C satisfies HI. 

Set A = 0 3 

¼ 3 

We shall calculate limA n using (4): 

' = 1 6 [ {  

lim X(n)= = ~ x ~ 1 -'1(3) A(a)(I - Ka(A)] -1 (~,-~), hence lira Ate3) = (~,~,~) and 

lim A" 
11")(30 

n--P oo 11"-)00 

2 1 2 

2 1 2 

4. Stochastic matrices - -  nonstatlonary case. In the preceding sections we 
considered stationary stochastic systems representable by a constant transition 
matrix. Nonstationary stochastic systems (discrete time parameter and finite 
number of states) are systems for which the transition probabilities may change 
from step to step. 

Mathematical represemation of such a system is provided by a sequence of 
stochastic matrices A(1), A(2),..., A(O,..', where A(/) is the transition matrix in the 

i-th step. 
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The set {A(k) [ k = 1,2,. . . .)  for a given system may contain an infinite number 
of  distinct matrices. However, we confine ourselves here to a finite set of distinct 
matrices N =  {Ak]k = 1,2,. . . ,n} and consider all products of  the form 
H I  Ar D ~=1 ~/,  m = 1,2,-.-, where A(i) is as above and A ( i ) e N ,  i = t ,2 , . . . ,m.  Set 

I I =lA(i) 11 b,J II, M5 ")= maxb,j, m~" '= m~n b,~. 

The counterpart of H 1 for the nonstationary case is the following: 
Condition H 3. A finite graph satisfies H 3 if every pair of vertices in the 

graph has a common consequent of order one. 
In what follows we shall say that a matrix satisfies Hx (H2 or Ha) if the graph 

related to the matrix satisfies H1 (H2 or H3). 
We can now prove the following: 

THEOREM 8. I f  N is a finite set of matrices all satisfying H a and if 
B = I 'IL~A(i) ,  A(i) ~ N, then 

M~ a) -- m~B)< (1 - 6)" j = 1,2,  . . . ,n  

where 6 is the minimal nonzero element among all elements of the matrices in N. 

Proof. (This proof generalizes the one given in [3, p. 173] for the stationary 
case). Let A be any matrix in N, A = II a,j II. Consider the sum ~ = l ( a , k -  a,k) 
for fixed e and ft. 

Divide this sum into two sums, ]E~ denoting summation over values of k 
for which a,k > aak, and I2~ denoting summation over values of k for which 
a,~ < aak. Then: 

~..+ (a~k ~ -- aOka) ar ~,-(a~k~ - a#k 2) = ~ (a~k -- aOk) = ~ aak -- ~ aOk = 1-- 1 = O. 
k~ k2 k = l  k = l  k = l  

Hence 

States ~ and fl have a common consequent of order one (condition Ha); hence 
there exists a~ such that aft, > 0 and ao~ > 0. I f  a,~ > ap[, then (a,~ - ap~) s ~+,, 
and 

Z+ta -- = Z~a~,-- ~, a~--a#i~<- l--6 ~:, ~, aak,) ~+,atjk, < 
k-- I  

If  a#~ < a¢~, then (a~g - a#~) ¢ ~ ,  and 

Thus in both cases 

(**) ~ + l ( a ~ ,  - apk,) < 1 - 6 .  

Let C = 1 e,l II ¢ N. We obtain 
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M~j Ac) -  m~A'c)= max Z (a~ - a~k)ekj =< 
~,~ k 

l+ } ~ max Zk,(a ,k , -  a~,)M} c~ + Z£(a~k , -  apk~)m} c~ 

-- max 2+(a~k - a w ~ ( c )  m~ c~) < (1 - ~)(M} ~ m}%; 
Ok] k ~'~ j - -  = 

=,fl k j  

due to (*) and (**) 

M~ c) -- m~ c) = c~1 -- cpj < ]~(C~k -- ct~k) <= 1 -- 6 

for fixed ~ and fl, so that M~ ac) - m(j A'c) < (1 - 6) 2. The theorem follows by 
induction. 

THEOREM 9. I f  A and  B are s tochast ic  matr ices ,  then K , ( A B )  = K , ( A ) . K ~ ( B ) .  

Proof. By definition R , ( A B )  = A B  - ~(AB)(,) = A B  - ~A(,)B = 

= A B  - ~A(,)B + ~ B ( r  ) - ~B(r) = A B  - ~A(,)B + ~A(,)~B(,) - A~B(,)  

= [ A  - ~ A ( , ) ]  [ B  - ~ B ( , ) ]  = gr(A) g,(B). T h u s  g,(AB) = g~(A)" g~(B). 
The r-th rows of  the matrices o n  both sides of  this equations are zero rows. 

The r-th column on the right is obtained by multiplying/~(A) by the r-th column 
of/~,(B). Thus omitting the r-th rows and columns on both sides does not affect 
the equality, and therefore 

K~(AB)  = K~(A)"  K~(B). 

THEOREM 10. I f  A and  B are s tochast ic  matr i ces  then 

[September 

(XB)(,) = A(r)K(,)(B) + 1~(,) 

Proof. A( , )R , (B )  + B(~) = A ( , ) [ B  - ~B(r)] + B(,) = A(r)B - A(,)~B(,) + B( , )= 

= A( , )B - B(,) + B(,) = A ( o B  = (AB)(,) .  Hence, (AB)~,) = A(o  R(,)(B) + B(,), and 
by considerations similar to those in the proof  of  the preceding theorem we obtain 

(AB)tr) = A(,)K(,)(B) + ]~(,). 

By induction, we obtain the formula 

A(i )  (,) = ,,i(,) K,(A(2))" Kr(A(3)) . . . . .  K , ( A ( m ) )  + 
i 

+ A(2 ) ( , )K , (A (3 ) )K , (A (4 ) )  . . . . .  K , ( A ( m ) )  + ... + A(m)( , ) .  

THEOREM 11. I f  H is a set o f  ma t r i ces  al l  sa t i s f y ing  Ha,  then 

(" ) lira K, l - IA(i)  = 0, 
m-~oo \ i = 1  

where  A ( i ) ~  N a n d  0 is the zero  m a t r i x .  

Proof. The terms in K , ( [ I m A ( i ) )  are differences of pairs of  terms in the same 
column of  the product matrix (1-l'~(A(i)). By Theorem 8, these differences are 
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smaller than ( 1 - ~ )  m where 6 is the smallest nonzero element in all matrices 

contained in N. But lim=_.oo(1-6)= = 0, and the proof  is complete. 

R E M A R K S  A N D  C O N C L U S I O N S .  

1) Consider the following condition for a set N of  stochastic matrices: 
Condit ion H, .  A finite set of stochastic matrices of  the same order satisfies 

H ,  (of order k) if there is a k such that every product of  k or more matrices from 
N is a matrix satisfying Ha. 

In a forthcoming paper we shall prove the following: 

THEOREM. Let N =  {Ai]i  = 1 . . . n }  be a f ini te set of  stochastic matrices o 
the same order. Let Bm be any  matr ix  of  the f o r m  B m = I-I~=i Aj ,  A j  ~ N.  Define 

11 Bm II as: II B ll = max,(M~ Bin'- m~ ~m,) (M~ ~m, and m (B') are as in Theorem 8). 
I f  and only i] N satisfies H a then limm..~o II Bin ]l = 0. 

This theorem generalizes Theorem 8. Moreover, it will be shown in that paper 
that H 4 is a decidable condition, i.e. one can check in a finite number of  steps 
whether a given set of  matrices N satisfies H 4. 

2) I f  N contains a single matrix, we revert to the stationary case. In this 
case Theorem 12 states that lim,_,oo[Kr(A)] n = 0. By Theorem 11 we find that 

m - - 1  

A(L ) = A(o[Kr(A)] " - I  + .'[(o[Kr(a)] "-2 + ... + A(O = A(r ) ~, [K~(A)] i. 
i = 0  

In the limit this becomes 

n - - 1  

lim A(•) = A(o lim ]~ [K,(A)]k 
n -..¢ oo n 'coo / = 1  

Consider the following 

THEOREM 12". I f  A is a matr ix  such that  l i m A " =  0 then ]I - A] ~ 0 and 
lim ~i~= o Ai = [I  - A] - x 

With the aid of  this theorem, noting that K~(A) satisfies its condition, (if A 
satisfies Ha) we obtain 

lim A(~,) = A(r)[I - K,(A)] -x, 

a formula derived earlier in a different manner. 

3) I f  N contains an infinite set of  matrices, Theorems 8 and 11 may be proved 

by stipulating that all nonzero terms in all matrices of  the (infinite) set N have 
a lower bound e > 0 and that all matrices in N satisfy H a. 

4) I f  N is a finite set of  doubly stochastic matrices satisfying Ha, then the 
products of  the form II~AI,A~ ~ N,  have a limit or, more precisely, the matrix Q 
all whose terms equal 1/n satisfies the equation 

*) For proof, see [4, p. 22]. 
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lim f i  A i = Q. 
m-~OO i 

5) With regard to long products of  stochastic matrices it is of  interest to in- 
quire whether there exists a procedure for approximating such a product. Sup- 
pose, for example, that A is a stochastic matrix which can be written in the form 
A = I + e where terms in e are small. The usual approximation A " =  I + he, 

ceases to be stochastic for sufficiently large n. However, it is seen from Theorems 8, 
10 and 11 that a good stochastic approximation to a long product of stochastic 
matrices (all satisfying H3 and all belonging to a finite set N of matrices) is ob- 
tained by omitting the first k matrices in the product, where k is an easily com- 
putable function of  the error allowed. For, as is seen from the above theorems, 
the first k matrices in the product contribute to the terms in the rth row of  the 
product of  m matrices at most: 

(1 - 5 ) " -  1 + (1 - ~ ) m - 2  + . . .  + (1 --  5) 'n-k = (1 - -  5) " - k -  (1 --  5 )"  
5 

while those in the other rows differ from their counterparts in the r-th row by 
at most (1 - 5)% where 5 is defined as in Theorem 9 and (1 - 5) is the maximal 
term in all kernels of the matrices in the finite set N. 
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